
Hacking & Defending Databases
Todd DeSantis

Technical Pre-Sales Consultant
todd@sentrigo.com



Why Protect The Database?

Databases hold sensitive information – and lots 
of it:
• Customer data, accounts, transactions, payroll, 

investor data

When a breach occurs, damage is significant:
• Direct damages and costs

• Bad publicity

• Regulatory penalties



Know Your Enemy

Unauthorized access - not just hackers
• Too many privileges

Internal attacks
• Disgruntled employees
• Just trying to get the job done
• Industrial espionage, Identity theft, etc.
• Look around you!!!

External attacks



Know Your Enemy

Hackers are trying:
• To cause damage
• Steal
• Gain access to host systems

Think like a hacker
• Learn exploits
• Look for security issues

Configuration, permissions, bugs



The Problems

Does a hacker need DBA access?
Myriads of privileges
• System level, Application level, Data access
• Any privelege in the right circumstances can 

be an issue

Other issues
• Incorrect configuration
• Too many features – large attack surface



Available Exploits

Have someone grant you DBA or ALL 
PRIVILEGES or ALTER USER
Default passwords
Password hashes 
Vulnerable code 
Built-in package exploits
• dbms_metadata.get_ddl
• ctxsys.driload.validate_stmt
• Many more



Finding Available Services

Google Hacking
• http://johnny.ihackstuff.com/ghdb.php
• ora tnsnames
• iSQL isqlplus

Use tools for:
• Brute force password cracking
• Guessing service names and versions
• http://www.petefinnigan.com/tools.htm



Google Hacking



Google Hacking



Google Hacking



SQL Injection

Wikipedia –
• is a technique that exploits a security 

vulnerability occurring in the database layer 
of an application. The vulnerability is 
present when user input is either incorrectly 
filtered for string literal escape characters 
embedded in SQL statements or user input is 
not strongly typed and thereby unexpectedly 
executed.



SQL Injection

Exists in
• Applications
• Stored program units

Build in
User created

Several types
• Inject SQL, Inject Functions
• Annonymous blocks of code



SQL Injection – Web Application

Username = ' or 1=1 --
The original statement looked like:
'select * from users where username = ''' + username + 

''' and password = ''' + password + '''
The result = 
select * from users where username = '' or 1=1 --' and 

password = ''



Protecting Your Database

Apply patch sets, upgrades and CPUs
• Easier said than done

Check for default and weak passwords 
regularly
Secure the network
• Listener passwords
• Valid node checking + firewall
• Use encryption



Protecting Your Database

Install only what you use, remove all else
• Reduce your attack vector

The least privilege principle
• Lock down packages

System access, file access, network access

Encrypt critical data
Use secure coding techniques
• Bind variables, ownership



Protecting Your Database

Try out the Hedgehog -
http://www.sentrigo.com
• Virtual patching
• SQL Injection protection
• Fine grain auditing
• Centralized management
• Terminate rogue sessions
• More



Questions?


